Thursday, April 13, 2017

Quantum imaging beyond the classical Rayleigh limit

A decade has passed since we were working on quantum imaging, as we reported in an article in the New Journal of Physics that was downloaded 2316 times. We had described the experimental set-up in a second article in Optics Express that was viewed 540 times. It is interesting that the second article was most popular in May 2016, indicating we were some 6 years ahead of time with this publication and over 10 years ahead when Neil Gunther started actively working on the experiment. The problem of coming too early is that it is more difficult to get funding.

Edoardo Charbon continued the research at the Technical University of Delft, where he built a true digital camera that used a built-in flash to create a three-dimensional model of the scene, and the sunlight to create a texture map of the image that could be mapped on the 3-d model. This is possible because the photons from the built-in flash—a chaotic light source that produces the photons from excited particles—and those from the sun—which is a thermal radiator (hot body)—have different statistics.

We looked at the first- and second-order correlation functions to tell the photons from the flash from those originating in the sun. Since the camera controlled the flash, the photon's time of flight could be computed to create the 3-d model. The camera worked well up to a distance of 50 meters.

I am glad that Dmitri Boiko is still continuing this line of research. With a group at the Fondazione Bruno Kessler (FBK) in Trento, Italy and a group at the Institute of Applied Physics at the University of Bern in Bern, Switzerland, he is working on a new generation of optical microscope systems by exploiting the properties of entangled photons to acquire images at a resolution beyond the classical Rayleigh limit).

Read the SPIE Newsroom article Novel CMOS sensors for improved quantum imaging and the open access invited paper SUPERTWIN: towards 100kpixel CMOS quantum image sensors for quantum optics applications in Proc. SPIE 10111, Quantum Sensing and Nano Electronics and Photonics XIV, 101112L (January 27, 2017).